
Available online at www.sciencedirect.com
www.elsevier.com/locate/ijhmt

International Journal of Heat and Mass Transfer 51 (2008) 3007–3017
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Abstract

A generalized model is developed which couples the evaporation at a liquid–air interface with the vapor diffusion processes in air to
enable an investigation of the mass transport inside an open microtube. Tube inner diameters ranging from 100 to 1200 lm are consid-
ered. Evaporation is strongest at the meniscus junction with the tube wall due to the highest local vapor diffusion flux at this location.
A temperature gradient is set up from the axis of the tube to the wall and results in Marangoni convection. The three-dimensional
flow structure in the microtube is simulated with the effects of Marangoni convection, buoyancy, and the influx of
fluid to the interface being included. For horizontal tubes of diameter 100 lm or larger immersed in a water bath, flow asymmetry
due to buoyancy is observed. A large vortex is formed in the lower part of the tube cross-section, while a small vortex forms above.
However, the primary cause of asymmetry is found to be the external thermal profile imposed on the microtube, especially when
the meniscus is far from the outlet of the tube. The simulated flow patterns are found to be consistent with experimental measurements.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of evaporating menisci in pores and grooved
structures is becoming increasingly common in a number
of applications including heat pipes, chemical processing
equipment and microfluidic devices. In heat pipe applica-
tions, for example, the emphasis is on maximizing the rate
of evaporation from the meniscus. This in turn depends on
the meniscus thickness, the mixing induced by Marangoni
and buoyant convection, as well as the rate of diffusion
of the evaporated vapor in air near the meniscus. It is nec-
essary to understand the details of the flow, heat and mass
transfer near evaporating menisci to develop better micro-
structures to aid evaporation. Evaporation in an open-tube
meniscus constitutes a simple canonical problem in which
the most critical effects can be elucidated.
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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The flow field and thermal conditions in the vicinity of
the meniscus have been widely studied [1–14]. A compre-
hensive theoretical analysis of evaporating/condensing
liquid films was conducted in [2]. Vapor recoil and
Marangoni convection were included. Evaporation and
condensation are governed by the departure from thermo-
dynamic equilibrium at the interface. Schmidt [3] discussed
the influence of Marangoni and buoyancy effects on the
flow field near an evaporating meniscus. In [4–6], the dis-
joining pressure due to long-range molecular forces was
considered. In these studies, the vapor domain was treated
as being uniformly saturated such that diffusion in the
vapor domain did not need to be considered. In contrast,
Deegan et al. [7] showed that evaporation of water droplets
is limited by diffusion of vapor in air. Cachile et al. [8]
explained their experimental results involving freely reced-
ing evaporating droplets using the same framework. In an
open microtube at room temperature, as shown in recent
experiments by Buffone et al. [9–11], thermocapillary
convection sets up a recirculation from the meniscus center
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Nomenclature

A area (m2)
D mass diffusion coefficient in air (m2/s)
Di tube inner diameter (m)
Do tube outer diameter (m)
F vapor mass fraction
hfg latent heat of evaporation (J/kg)
h convection coefficient (W/m2 K)
hl liquid enthalpy (J/kg)
k thermal conductivity (W/m K)
L distance from tube outlet (m)
mnet mass flow rate (kg/s)
m00net mass flux (kg/m2 s)
M molecular weight (kg/kmol)
n interfacial normal coordinate (m)
Nu Nusselt number
p pressure (N/m2)
R universal gas constant (J/mol K)
ri tube inner radius (m)
ro tube outer radius (m)
Ra Rayleigh number
s interfacial tangential coordinate (m)
Sm mass source term (kg/m3 s)
Se energy source term (W/m3)
Pr Prandtl number
T temperature (K)
V velocity (m/s)
X vapor molar fraction

Greek symbols

b thermal expansion coefficient (1/K)
d thickness (m)
h contact angle
m kinematic viscosity (m2/s)
l dynamic viscosity (Ns/m2)
q density (kg/m3)
r surface tension coefficient (N/m)
r̂ accommodation coefficient
s shear stress (N/m2)

Subscripts

air air
cell cell element
e evaporation
equ equilibrium
f face of cell element
g gas (vapor/air mixture)
l liquid
lv interface
out outlet
ref reference
sat saturated
v vapor
w tube wall
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towards the tube wall, contrary to previous results [12] in
which the Marangoni flow was reported to flow away from
the heated wall. Rice and Faghri [13] computed vapor dif-
fusion in the air domain and found that diffusion is stron-
ger at the wall than at the center of the meniscus, which
could induce the Marangoni flows observed in [10,11].
Recent detailed experiments [14,29] showed an increasing
asymmetry in the flow pattern near the evaporating menis-
cus with increasing tube diameter.

The objective of the present work is first to develop a
generalized model for evaporation from a meniscus into
air. Unlike previous studies accounting for only evapora-
tion [2–5] or diffusion [7–13], the combined effects of
evaporation and diffusion are modeled in present work.
Furthermore, the three-dimensional flow field in the
microtube is simulated with a consideration of Marangon-
i, buoyancy, and evaporation effects. The growth in
flow asymmetry with tube size found experimentally [14]
is realized in the simulations as well. The effects of
externally imposed temperature gradients on the tube are
also considered. Since this external gradient strongly
affects Marangoni convection, it is shown to have a far
more profound effect on flow asymmetry than does
buoyancy.
2. Mathematical model

2.1. Problem description

A pinned meniscus located inside a capillary tube at a
distance L from the tube outlet is considered, as shown
in Fig. 1. On one end of the tube is the liquid inlet while
on the other is the outlet for vapor. The tube is in an ambi-
ent of air at room temperature. A convection heat transfer
boundary condition is imposed on the outer wall of the
tube

�kwrT �~n ¼ hðT w � T airÞ ð1Þ
in which Tair is assumed 298 K and Tw is to be calculated.
The value of the convection coefficient h corresponds to
natural convection from a long horizontal cylinder

h ¼ k
do

Nu ð2Þ

with the Nusselt number Nu given by [15]

Nu ¼ 0:6þ 0:387Ra1=6

ð1þ ð0:559=PrÞ9=16Þ8=27

 !2

;

Ra ¼ ðgbjT w � T airjd3
oPrÞ=m2: ð3Þ



Fig. 1. Schematic diagram of evaporating meniscus in a microtube.
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For a tube of do = 600 lm and Tw � Tair = 10 K, h �
30 W/m2 K. Since Tw varies along the axis direction (the
section of the tube wall near the meniscus has the lowest
temperature), Ra varies along the tube in the simulation.
A given stagnation-pressure inlet for the liquid and a given
static-pressure outlet [16] for the vapor are set at the two
ends of the tube. The temperature of liquid at the inlet is
assumed equal to the room temperature.
2.2. Evaporative mass flow

The path taken by the evaporated liquid is illustrated in
Fig. 1. Liquid is first converted into vapor by evaporation
at the meniscus. The vapor then diffuses through the vapor/
air mixture in the tube, and out into the ambient. To obtain
the evaporative mass flow rate under steady-state condi-
tions, these three processes must be solved together as
described below.
2.2.1. Evaporation at the liquid–vapor interface

For the evaporation process, the interface evaporation
theory proposed by Schrage [17] yields the mass flux across
the liquid–vapor interface

m00net ¼
2r̂

1� 2r̂
M

2pR

� �1=2 pv equðT lvÞ
T 1=2

lv

� pv

T 1=2
v

 !
: ð4Þ

Assuming the vapor temperature at the interface, Tv, to be
equal to the interface temperature Tlv, Eq. (4) becomes

m00net ¼
2r̂

1� 2r̂
M

2pR

� �1=2
1

T 1=2
lv

ðpv equðT lvÞ � pvÞ: ð5Þ

Despite the suppression effects of the disjoining and
capillary pressures [6,18], the equilibrium vapor pressure
is approximately the corresponding saturation pressure,
pv_equ(Tlv) = psat (Tlv), which in turn is given by

psatðT lvÞ ¼ psat ref exp
Mhfg

R

1

T sat ref

� 1

T lv

� �� �
: ð6Þ
2.2.2. Vapor transport through the tube

Assuming a dilute mixture of vapor in air, the species
equation describing the transport of vapor from the inter-
face to the tube outlet is given as

0 ¼ �r � ðqg
~V F Þ þ r � ðqgDrF Þ: ð7Þ

Given boundary conditions at the two ends, Fout and Flv,
Eq. (7) can be solved in the vapor/air domain. The diffu-
sion mass flux at the interface can be obtained from

m00diff ¼ �
oF
on

����
lv

qgD: ð8Þ

The vapor transport includes both diffusion and convec-
tion. Therefore [15]

m00net ¼
m00diff

ð1� F lvÞ
: ð9Þ

This vapor transport is equal to the evaporated mass flux
calculated by Eq. (5) due to mass conservation. Therefore,

�oF
on

����
lv

qgD

1� F lv

¼ 2r̂
1� 2r̂

M

2pR

� �1=2
1

T 1=2
lv

ðpv equðT lvÞ � pvÞ:

ð10Þ

On the other hand, the vapor fraction at the interface is re-
lated to the local vapor pressure as

F lv ¼
pvMv

pvMv þ ðp � pvÞMair

: ð11Þ

Diffusion and evaporation are coupled by Eqs. (10) and
(11) since the diffusion flux of vapor at the interface must
equal the evaporative flux.

The total mass flow rate is the integral of the evaporated
mass flux on the meniscus

mnet ¼
I

meniscus

m00netdA: ð12Þ
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2.2.3. Vapor diffusion out of the tube

Flv and Fout are boundary conditions for the calculation
of vapor diffusion in the vapor/air domain (Fig. 1). Flv is
obtained from pv at the interface using Eq. (11). The vapor
fraction at the tube outlet, Fout, must be obtained by solv-
ing for the diffusion process from the tube outlet into the
ambient. As shown in Fig. 1, a hemispherical domain is
created at the outlet of the tube and its surface (r = ri in
Fig. 1) is assumed to have a uniform vapor mass fraction
Fout. Assuming that the diffusion from the hemisphere sur-
face to the ambient mainly occurs in the half space at the
tube outlet as shown in Fig. 1, the diffusion process out
of tube may be solved in spherical coordinates

r2F ¼ 0 or
d

dr
r2 dF

dr

� �
¼ 0 ð13Þ

with boundary conditions

r!1; F ¼ 0;

r ¼ ri; F ¼ F out

ð14Þ

The vapor fraction Fout on the hemisphere surface r = ri is
obtained from

F out ¼
mnet

2priqgD
: ð15Þ

The mass flow rate mnet is equal to the integrated mass
evaporated from the interface (Eq. (12)).

In summary, three equations – Eq. (5) for the evapora-
tion at the interface, Eq. (7) for the vapor transport in the
tube and Eq. (15) for diffusion outside the tube – must be
solved to obtain the three unknowns, m00net, Fout and Flv.
Eq. (7) is solved using a CFD model in the vapor/air mix-
ture domain to obtain the F distribution. Then m00net is
obtained from Eqs. (9), (5) and (15) are used to derive
boundary conditions Flv and Fout for the CFD model.
Details of the solution loop are illustrated in Fig. 2.
2.3. Governing equations in liquid domain

Steady, laminar, incompressible flow of a Newtonian
fluid is assumed in the liquid domain. Assuming all proper-
ties to be constant except the density, the continuity,
momentum and energy equations are given by
Transport in 
tube (CFD) 

Evaporative
mass flux, Eq. (5) 

Local mass 
flux, Eq. (9) 

pv

Diffusive mass 
flow rate at tube 
outlet, Eq. (15) 

FoutFlv

Mass flow rate, 
Eq. (12) 

Fig. 2. Iteration loop for mass flow calculation.
r � ~V ¼ 0; ð16Þ

0 ¼ �rp þr � ðllr~V Þ � ql
~V � r~V � ðql � qrefÞg~j; ð17Þ

0 ¼ �ql
~V � rðhlÞ þ r � ðklrT Þ: ð18Þ

Natural convection is modeled using the Boussinesq
approximation in which the liquid density change with
temperature in the buoyancy term is given by

ql � qref ¼ qrefbðT � T refÞ: ð19Þ

For the vapor/air domain, the flow is again assumed to
be steady, laminar and Newtonian. In addition, the ideal-
gas law is also assumed to hold. Since the liquid region
and the vapor/air region are assumed separated by a fixed
meniscus, they are solved separately. In the solid tube wall,
the conduction equation is solved

r2T ¼ 0: ð20Þ
Continuity of heat flux and temperature are imposed at the
solid/liquid interfaces.

2.4. Liquid–vapor interface

The interfacial conditions are given below.

Mass continuity

ql
~V l �~n ¼ qv

~V v �~n: ð21Þ
Conservation of energy

�klrT �~nþ kgrT �~n ¼ hfgm00net: ð22Þ
Conservation of normal momentum

_m00netð~V l � ~V vÞ �~nþ pl � pg ¼ pc: ð23Þ

In Eq. (23), the first term on the left is the vapor recoil force
due to the momentum of the evaporating mass, and would
need to be accounted for only if there is intense evapora-
tion [19]; it is ignored here. The third term pg is the atmo-
spheric pressure. The second term pl is influenced by the
liquid flow caused by evaporation and thermocapillary
convection. Using a viscous scaling approximation, the
pressure change over the tube diameter di due to the flow
field is given by

Dp ¼ V l
d i

: ð24Þ

On the other hand, the capillary pressure scales as

pc ¼ 2r=ri: ð25Þ

For the low fluid velocities expected in the current problem
(<10 mm/s), pc is found to be greater than Dp by at least
three orders of magnitude. Therefore, the influence of flow
on the interface shape is negligible and the curvature is al-
most constant [20,21]. In the simulation, the meniscus is as-
sumed to be part of the surface of a sphere which has an
assumed contact angle with the inner wall of the tube.



Interface

Sm Se

-Sm

Vapor layer at interface 

H. Wang et al. / International Journal of Heat and Mass Transfer 51 (2008) 3007–3017 3011
Finally, ignoring the shear force exerted by the low-vis-
cosity air, the tangential force due to the surface tension
gradient must balance the shear stress on the liquid. This
yields

sl ¼ �
dr
dT

oT
os
: ð26Þ
Table 3
Mesh-independence results

Mesh 1 Mesh 2 Mesh 3 Mesh 4

Minimum temperature (K) 289.90 289.86 289.77 289.40
Deviation from Mesh 1 (%) – 0.014 0.045 0.172
Mass flow rate (10�10 kg/s) 9.42 9.53 9.55 10.01
Deviation from Mesh 1 (%) – 1.17 1.38 6.26

FeedingLiquid layer at interface  

Fig. 4. Source terms imposed in interface cells.

Table 1
Fluid properties (298 K, 1 atm)

Fluid Methanol Air

M ðkg=kmolÞ 32.04 28.97
q (kg/m3) 786 1.225
k (W/m K) 0.3489 0.0242
l (kg/m-s) 8.56 � 10�4 1.78 � 10�5

Cp (J/kg K) 2534 1006
hfg (kJ/kg) 1188.9 –
dr/dT (N/m K) 8.0 � 10�5 –
b (1/K) 1.2 � 10�3 –
D (m2/s) 1.6 � 10�5 –

Table 2
Different meshes used in the mesh-independence study

Mesh 1 Mesh 2 Mesh 3 Mesh 4

Faces on meniscus 1415 1178 503 290
Cells in liquid (Hex) 157,410 75,284 34,752 23,680
Cells in vapor (Hex) 118,800 38,940 32,580 12,800
Cells in solid wall (Hex) 78,120 36,960 29,760 20,520
3. Numerical analysis

The numerical solution is obtained using the pressure-
based finite volume scheme described in [22,23]. The com-
mercial software package FLUENT [24] is used. Second-
order upwind differencing is used for the advection terms,
while the SIMPLE algorithm is used for pressure–velocity
coupling.

The grid setup is as shown in Fig. 3. Hexahedral ele-
ments are used in all domains. Only one-half of the tube
domain is taken into account in view of the symmetry
about the vertical center plane (x = 0).

To simulate the mass transport across the liquid–vapor
interface, it is assumed that the mass transport occurs
within the two layers of mesh cells adjacent to the interface.
In the liquid layer the mass is consumed due to evapora-
tion, as shown in Fig. 4. The mass source term imposed
in these liquid cells is therefore a negative value, given by

Sm ¼ �m00netAf=V cell: ð27Þ
Here, Af is the interface area of the cell and Vcell is the vol-
ume of the cell. The same amount of mass is generated in
the vapor cell layer adjacent to the liquid layer to mimic
evaporation. Thus, by means of source terms in the two
layers, mass transfer from liquid to vapor is accomplished
[25,26]. To simulate the cooling effect at the interface, a sin-
gle layer of energy source terms is employed. The results
are found to be identical when the energy source terms
are imposed on either the vapor side or the liquid side.
For the liquid side,

Se ¼ �m00nethfg=V cell: ð28Þ
A grid-independence study was performed using metha-

nol as the working liquid; its properties at standard condi-
tions are listed in Table 1. Four sets of grids were generated
as summarized in Table 2; the test results are shown in
Fig. 3. Mesh setup as an isometric view on the left, and through the vertical center plane on the right.
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Table 3. Based on these results, Mesh 2 is employed in all
simulations presented in this paper.
4. Results and discussion

Simulations were carried out using the conditions
employed in the experiments of Buffone and Sefiane [27],
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Fig. 5. Axial temperature variation along the outer surface of the tube.

Fig. 6. Evaporating meniscus in tube (L = 0.48 mm, di = 600 lm): (a) vapor ma
meniscus center, (c) temperature contours in liquid (K), and (d) temperature c
in which the evaporation rate on the meniscus and the tube
temperature were measured. Methanol was used as the
working liquid. The environment was assumed to be at a
room temperature of 298 K. The contact angle between
the liquid and the tube wall was set at 15�. A meniscus-
to-outlet distance L of 0.48 mm, and tube inner diameter
di of 600 lm were considered. The tube material was boro-
silicate glass, with conductivity of 1.4 W/m K as employed
in [18].

Gravity as well as the external thermal profile could
affect the flow and thermal fields at the meniscus. We first
present results without considering these effects and subse-
quently discuss their influence in Sections 4.4 and 4.5.
4.1. Overall evaporation rate and cooling effect

The total evaporated mass flow rate from the entire
meniscus, which is also the mass flow rate through the tube
outlet, is computed from the simulation to be mnet =
1.9 � 10�9 kg/s, consistent with the experimental value
[27] of 2.0 � 10�9 kg/s. This corresponds to an evaporative
heat flow rate of 2.26 � 10�3 W, or a heat flux of
8.0 � 103 W/m2 over the tube cross-sectional area pr2

i . If
the meniscus is assumed to have no curvature, the vapor
ss fraction contours, (b) evaporated mass flux along meniscus from wall to
ontours on the meniscus (K).



Fig. 7. Liquid flow field due to Marangoni convection and feeding flow
(under zero gravity): (a) velocity vectors in vertical center plane, and (b)
3D path lines in liquid domain.
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transport in the tube may be simplified into a 1D problem.
Combining Eqs. (8) and (9) we obtain

m00net ¼
qgD

1� F
dF
dz
: ð29Þ

Integrating from the meniscus (F = Flv at z = 0) to the tube
outlet (F � 0 at z = �L), we find

m00net ¼ �
qgD

L
lnð1� F lvÞ ð30Þ

which is the equation for Stephan’s flow [15] under the com-
bined action of diffusion and convection produced as a result
of phase change at the meniscus. Using Eq. (30), mnet =
1.6 � 10�9 kg/s is predicted when L = 0.48 mm, which com-
pares well with both the full simulation and the experimental
result. From Eq. (30) it is clear that mnet is inversely propor-
tional to the length of the vapor region, L. This occurs be-
cause a longer vapor/air region increases the diffusion
resistance, and suppresses the evaporative mass flow rate.

Evaporation at the meniscus has a cooling effect on the
tube wall. A maximum temperature drop of 7 K below
room temperature is observed on the outer surface of the
tube from the predicted results, as shown in Fig. 5. The
IR measurements in [27] indicated a similar temperature
distribution on the tube, with the lowest temperature
occurring near the location of the meniscus.

4.2. Non-uniformity of vapor diffusion flux on meniscus

Contours of the vapor fraction of methanol in the tube
are shown in Fig. 6a. The vapor fraction decreases from
Flv � 0.13 at the meniscus to Fout � 2.7 � 10�8 at the outlet;
the corresponding drop in vapor pressure is 1.1 � 104 Pa.
An important observation is that the vapor mass fraction
contours in the near-wall region are denser than at the tube
axis. The larger value of mass fraction gradient leads to a
higher diffusion flux at the wall. The evaporation flux along
the meniscus is shown in Fig. 6b, and is greatest at wall. The
non-uniformity of the diffusion flux on the meniscus results
in stronger evaporation at the wall, and correspondingly,
greater cooling. The liquid domain temperature in Fig. 6c
and the meniscus temperature in Fig. 6d both indicate that
the lowest interface temperature occurs at the wall.

The larger value of mass fraction gradient at the wall is
due to meniscus curvature, as seen in Fig. 6a. The distance
to the tube outlet from the wall-meniscus contact line is
shorter than that from the meniscus center. Furthermore,
since the direction for vapor diffusion is normal to the
meniscus, vapor evaporating from the meniscus near the
wall tends to diffuse towards the tube axis. If the contact
angle of the meniscus were 90�, this non-uniformity in dif-
fusion flux would disappear.

4.3. Marangoni and feeding flow

Marangoni convection at the liquid–vapor interface
drives the liquid to flow from the warm region at the tube
centerline to the cool region at the wall. The meniscus tem-
perature distribution in Fig. 6d induces a Marangoni vor-
tex with the flow direction being from the meniscus
center to the wall, as shown in Fig. 7a along the vertical
center plane in the liquid domain. In the 3D view shown
in Fig. 7b, a toroidal vortex can be seen near the meniscus.

Fig. 7b also shows the feeding flow from the inlet which
replenishes the mass lost to evaporation from the meniscus.
The feeding velocity at the inlet is approximately 9 lm/s.
The flow streamlines are parallel to the tube axis until the
vicinity of the meniscus is approached, after which the fluid
is entrained by the vortex at the meniscus. If the Marang-
oni effect is turned off in the simulation, the flow field
shown in Fig. 8 is obtained, and the feeding flow is more
obvious. Since evaporation is strongest at the wall, the
feeding flow is seen to be pulled toward the wall.

4.4. Influence of gravity

Experimental data for flow near the meniscus in [27,14]
indicate that the flow in the vertical center plane (i.e., the y–
z plane) in Fig. 7 may lose symmetry about the horizontal
plane. Two possible agents could cause this loss of symme-
try. For sufficiently large Rayleigh numbers, buoyant
convection in the liquid would act to destroy symmetry.



Fig. 10. Variation of flow patterns along the vertical center plane for tube
diameters di of: (a) 100 lm, (b) 600 lm, and (c) 1200 lm.

Fig. 8. Feeding flow without Marangoni convection.

Fig. 9. Gravity-induced buoyant flow in the vertical center plane of the
liquid.

Table 4
Variation of Rayleigh and Marangoni numbers and evaporation flux with
tube size (L = 0.48 mm)

di (lm) Ra Ma Ra/Ma mnet=pr2
i ðkg=s m2Þ

100 2.57 � 10�9 8.04 � 10�6 3.20 � 10�4 6.1 � 10�3

600 6.62 � 10�7 1.13 � 10�4 5.83 � 10�3 3.3 � 10�3

1200 6.32 � 10�5 7.17 � 10�4 8.82 � 10�2 3.0 � 10�4
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The liquid is cooled at the meniscus due to evaporation and
is warmer in the interior of the fluid, causing a recirculation
in the direction shown in Fig. 9. Another agent which could
destroy the top-to-bottom symmetry is the presence of an
external temperature gradient, that is, a y-direction gradi-
ent on the tube outer surface. We explore both these effects
below.

The buoyancy-driven flow scales as d3 and depends
strongly on tube size. In Fig. 10, a series of flow patterns
with increasing tube inner diameter are shown. For the
100 lm diameter tube, the gravitational influence is weak.
The flow pattern is almost symmetrical about the horizon-
tal center plane. When the tube size increases to 600 lm,
however, asymmetry appears, with the top vortex being a
little smaller than the bottom one. At the same time, the
backward flow proposed in Fig. 9 is observed at the bottom
in Fig. 10. When the tube diameter is further increased to
1200 lm, the gravitational influence is more significant:
the bottom vortex grows larger and occupies much of the
tube diameter, while the top vortex shrinks into the top
corner.

The strength of the Marangoni and buoyancy flows are
represented by the Marangoni and Rayleigh numbers,
respectively

Ma ¼ dr
dT

DT 1

ri

r2
i

1

lk
; ð31Þ

Ra ¼ gbDT 2d3
i =mk: ð32Þ

Here DT1 is the temperature difference across the meniscus
due to non-uniform evaporation from center to wall, and
DT2 is the temperature difference between the average tem-
perature on the meniscus and the interior bulk temperature
(which is 298 K). When the tube size increases, as listed in
Table 4, the strength of the buoyant and Marangoni flows
both increase, but the increase in buoyant flow is greater,
causing the ratio Ra/Ma to increase. From Table 4 it is also
seen that the evaporation flux mnet=pr2

i is inversely propor-
tional to tube size.

The 3D flow structure for asymmetrical flow is shown in
Fig. 11. A small vortex is seen at the top corner while a
large vortex is noted at the bottom. Unlike the case of
the symmetrical flow in Fig. 7b, the feeding flow is first
entrained into the small vortex and subsequently reaches
the bottom vortex in a 3D flow pattern.

The asymmetry caused by gravity is found to be insensi-
tive to vapor region length L, i.e., the distance of the menis-



Fig. 11. Asymmetrical vortex induced by gravity (di = 1200 lm): 3D flow
structure.

Table 5
Variation of Rayleigh and Marangoni numbers and evaporation flux with
distance of meniscus from tube outlet, L (di = 600 lm)

L (mm) Ra Ma Ra/Ma mnet=pr2
i ðkg=s m2Þ

0.48 6.62 � 10�7 1.13 � 10�4 5.83 � 10�3 3.3 � 10�3

3.00 1.86 � 10�7 1.97 � 10�5 9.47 � 10�3 7.6 � 10�4

20.00 4.66 � 10�8 3.96 � 10�6 1.18 � 10�2 2.1 � 10�4
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cus from the tube outlet, as demonstrated in Fig. 12. When
the meniscus is deeper inside the tube, the evaporation rate
drops; the temperature difference across the meniscus DT1

and the temperature difference between the meniscus and
the bulk flow DT2 also drop as a result. As listed in Table
5, although Ra and Ma both decrease, the ratio Ra/Ma

does not vary much with L, resulting in the similarity
between the flow patterns shown in Fig. 12.
4.5. Influence of external temperature profile

Asymmetrical flow patterns were observed in experi-
ments by Chamarthy et al. [14] and Dhavaleswarapu
et al. [28,29] in which the fluorinated ethylene propylene
(FEP) tube was immersed in a water bath at room temper-
ature. The contact angle between the liquid and the tube
wall was 50�. In this section, computations performed for
the configuration in [14] are presented.

The experimental and simulation results are shown
together in Fig. 13a and c. Fig. 13b shows the simulation
results when both buoyancy and Marangoni convection
are taken into account. As expected, the presence of buoy-
ancy causes an increase in asymmetry with tube size, and
this effect is captured by the simulation. However, the
extent of asymmetry is not as great as in the experimental
results. On the other hand, if the tube outer surface has a
Fig. 12. Insensitivity to length L of the asymmet
temperature profile which increases linearly in the positive
y direction, i.e., temperature drops from top to bottom,
much stronger asymmetry, similar to that in the experi-
ments, is computed, as shown in Fig. 13c along the vertical
center plane. The reason is that the imposed temperature
profile changes the temperature distribution on the menis-
cus, making the top part warmer and bottom part cooler,
such that Marangoni flow towards the bottom is stronger.
For the case shown in Fig. 13c, a temperature gradient of
0.03 K/mm was imposed on the outer surface. For an outer
tube diameter of 800 lm (inner diameter 400 lm), this gra-
dient implies a temperature difference of 0.024 K between
the tube top and bottom. Even this mild external tempera-
ture profile induces a much stronger asymmetry than buoy-
ancy. Mild external temperature variations could arise
from temperature non-uniformities in the water bath; how-
ever, such highly resolved temperature measurements are
very difficult to obtain, and were not available from the
experiments.

Unlike the asymmetry induced by buoyancy alone (Sec-
tion 4.4), the asymmetry due to the external temperature
profile is quite sensitive to the length of the vapor region,
L. Fig. 14 shows a series of flow patterns in a 400 lm tube
for increasing L. The flow pattern is clearly more sensitive
to the external temperature profile for longer L. When L is
small, the evaporation rate is high and the induced temper-
ature gradient along meniscus is large. As a result, the flow
pattern is more strongly influenced by the meniscus. When
the meniscus is deep inside the tube, the temperature gradi-
ent along the meniscus due to evaporation is small and it is
the external temperature profile that determines the flow
pattern. It is speculated that the asymmetry in the experi-
mental results shown in Fig. 13a is primarily due to mild
temperature non-uniformities in the water bath surround-
ing the tube. Further controlled experiments are needed
to validate the strong influence of even small variations
in external temperature distribution on the flow patterns.
rical vortex flow pattern induced by gravity.



Fig. 13. Comparison between experimental and simulation results: (a) experimental results in [14] (L is on the order of cm), (b) simulation results in the
presence of gravity, L = 20 mm, and (c) simulation results in the presence of gravity and an external temperature profile, L = 20 mm.

Fig. 14. Variation of flow pattern with meniscus distance from the outlet, L, under an imposed external temperature profile of 0.03 K/mm.
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5. Conclusions

Heat and mass transfer at the meniscus of a volatile
liquid evaporating inside a microtube are numerically
investigated. Convection due to Marangoni effects and
buoyancy in the liquid region, evaporation at the meniscus,
transport of vapor in the tube, and diffusion of vapor from
the tube outlet into the ambient are solved together. Evap-
oration is found to be stronger at the junction of the menis-
cus and the tube wall than at the meniscus center due to the
higher diffusion flux at the wall. The resulting temperature
gradient from the meniscus center to the wall brings about
Marangoni flow directed from the center of the tube
toward the wall.

The existence of both gravity and externally imposed
temperature gradients results in asymmetric flow patterns
in the liquid. Though gravity has a discernible effect for
large-diameter tubes, its influence at small diameters
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(approximately 100 lm or less) is found to be negligible.
When the tube size increases, the vortex at the bottom
grows larger while the one at the top shrinks. Mild external
temperature gradients of the order of 0.01 K/mm are found
to cause significant asymmetry in the observed flow pattern
when the meniscus is several centimeters away from the
tube outlet. These external gradients are most likely the
cause of observed flow asymmetries in experimental data.
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